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Communication
2-D Electromagnetic Scattering From Multiple Arbitrarily Anisotropic

Inhomogeneities Embedded in Multilayered Biaxially Anisotropic
Elliptical Cylinders Solved by the Hybrid SIM/SEM

Zhen Guan , Jiawen Li , and Feng Han

Abstract— In this communication, the 2-D electromagnetic (EM) scat-
tering from multiple inhomogeneous arbitrarily anisotropic scatterers
embedded inside multilayered biaxially anisotropic elliptical cylinders
when the illumination source is transverse electric (TEz) polarized is
formulated and solved by the hybrid spectral integral method (SIM)
and spectral element method (SEM). The multiple smooth elliptical
boundaries are discretized in the framework of 1-D integral equations
(IEs), and the equivalent current on the boundaries is solved for by
SIM. In contrast, the multiple inhomogeneous regions containing the
anisotropic scatterers are separately discretized in the framework of
2-D Helmholtz equations and the magnetic fields inside the regions
are solved by SEM with the 1-D boundary integration to truncate the
computational domain. The multilayered SIM system matrix and the
multiple SEM system matrices are coupled together by the radiation
boundary conditions to form the final system matrix. Based on this
matrix, both the equivalent current in multiple boundaries and the
magnetic fields inside multiple inhomogeneous scatterers are simulta-
neously solved. Two numerical experiments are carried out to validate
the computation precision and efficiency of the proposed hybrid method.

Index Terms— Anisotropy, electromagnetic (EM) scattering, multilay-
ered elliptical cylinders, spectral element method (SEM), spectral integral
method (SIM).

I. INTRODUCTION

Electromagnetic (EM) scattering refers to the physical process in
which the incident wave interacts with specific targets, and thus the
wave parameters such as the amplitude and phase are changed. Its
wide applications include microwave imaging [1], subsurface detec-
tion [2], geophysical exploration [3], artificial material design [4],
and so on.

One of the commonly used methods to solve EM scattering
problems is to formulate them using the integral equation (IE)
which includes both the unknown total fields and the integral of
the multiplication of the unknown total fields and Green’s functions.
Therefore, the IE usually has no analytical solution and it can be
discretized and numerically solved by the method of moment (MoM)
[5]. Unfortunately, the computational cost of the traditional MoM
is unaffordable [6]. Several improved numerical methods have been
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proposed in the past decades. They mainly include the conjugate gra-
dient method [7], the adaptive integral method [8], the fast multipole
algorithm [9], the precorrected fast Fourier transform (FFT) [10], the
stabilized biconjugate gradient accelerated by FFT [11], etc. In these
IE-based methods, the computational domain is usually restricted in a
limited region that can tightly wrap the scatterers, and the transceivers
are allowed to be placed far from the domain. However, because
they are highly dependent on Green’s functions, their applications
to the scattering problems with irregular background media are
problematical since Green’s functions are usually not easy to evaluate
for arbitrarily irregular media.

The differential equation (DE) can adapt to arbitrarily inhomo-
geneous background media since it directly describes the local EM
fields which also can be directly solved for as long as some proper
boundary conditions are imposed. Usually, the differential-form
Maxwell equations or the Helmholtz equations are discretized
and numerically solved. The commonly used DE-based numerical
approaches include the finite-difference frequency-domain (FDFD)
method [12], the finite-difference time-domain (FDTD) method [13],
the finite element method (FEM) [14], the spectral element method
(SEM) [15], etc. The drawback of these DE-based methods is that
the computational domain always encloses the transceivers when the
absorbing boundary conditions are imposed, which inevitably leads
to high costs when transceivers are far from the scatterers.

In this communication, we hybridize the IE-based method and the
DE-based method to efficiently solve the 2-D EM scattering from
multiple inhomogeneous scatterers embedded inside multiple ellipti-
cal cylinders. Specifically speaking, we formulate the EM scattering
from the multilayered biaxially anisotropic elliptical cylinders using
1-D surface IEs but formulate the EM scattering from the multiple
arbitrarily anisotropic inhomogeneous scatterers embedded inside
the cylindrical layers using 2-D Helmholtz equations. Meanwhile,
to enhance the implementation efficiency, the 1-D surface IEs are
discretized and solved using the spectral integral method (SIM)
[16] instead of using the traditional MoM while the 2-D Helmholtz
equations are discretized and solved using SEM [17] instead of using
the traditional FEM. The system matrix of the multilayered SIM and
the system matrices for multiple SEM regions are coupled together to
form the final spectral-element spectral-integral (SESI) system matrix
via multiple radiation boundary conditions which are also formulated
in the spectral domain in this work. Although there are also other
hybrid methods proposed in previous works, e.g., [18] and [19]
dealing with the similar scattering problem, most of them adopt the
traditional FEM and MoM to solve EM scattering from 2-D objects
wrapped in an isolated domain. In [20], although SIM is used, it is
hybridized with FEM to compute EM fields scattered from an isolated
scatterer buried in a layered medium. This work is the extension of
our previous works [17] and [21] and its major new contribution
is that the EM scattering from multiple inhomogeneous arbitrarily
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Fig. 1. Multiple 2-D inhomogeneous scatterers embedded inside multilayered
nonconcentric elliptical cylinders illuminated by an EM wave that is excited
by a magnetic dipole source M.

anisotropic scatterers embedded in multiple 2-D biaxially anisotropic
elliptical cylinders is computed by the hybrid SESI method. It is also
different from [22] since we consider the anisotropy in this work.
In addition, SIM is only hybridized with SEM implemented in a
whole circular ring in [22]. In contrast, in our current work, SIM is
also hybridized with SEM implemented in several isolated domains
embedded inside an elliptical ring, which significantly increase the
system matrix complexity due to the mutual coupling between those
isolated domains and the elliptical boundaries. Although the proposed
hybrid SESI method has the limitation that the boundaries of both
the multilayered background medium and those embedded isolated
regions must be smooth ellipses to allow the EM field expansion with
low-order Fourier series [21], it still has the potential applications
in fast microwave imaging of multiple scatterers embedded inside
cylindrically shaped objects [23], design of microstrip antennas
mounted on multilayered circular cylinders [24], EM induction and
dielectric logging [25], etc.

The rest of this communication is organized as follows.
In Section II, the 2-D SESI formulas for EM scattering by mul-
tiple inhomogeneous scatterers embedded inside multiple elliptical
cylinders are derived based on the previous formulas given in [17]
and [21]. In Section III, two numerical examples are presented to
validate the correctness and computation efficiency of the derived
formulas. In Section IV, the conclusion and discussion are presented.

II. METHODS

As shown in Fig. 1, the background medium includes M ellip-
tical cylindrical boundaries which are denoted as l1, . . . , lM . The
elliptical regions �1, . . . , �M+1 are biaxially anisotropic. They are
illuminated by an EM wave that is excited by a magnetic dipole
source M and has the transverse electric (TEz) polarization. These
basic configurations are the same as those shown in [21, Fig. 1].
Therefore, we still formulate the magnetic fields on the boundaries
l1, . . . , lM using 1-D surface IEs and solve them using SIM. On the
other hand, we place several arbitrarily anisotropic inhomogeneous
scatterers in the region �m+1 which is enclosed by the lm th and
lm+1th boundaries and in the region �n+1 which is enclosed by the
ln th and ln+1th boundaries. Because the scatterers placed inside the
region �m+1 are dense, the whole region is directly discretized and
the EM fields inside it are solved by SEM. In contrast, those isolated
scatterers placed inside the region �n+1 are sparse. So we enclose
them with the smooth elliptical surfaces S3, . . . , SM , discretize these
isolated domains, and solve the EM fields inside them with the hybrid
SESI method [17]. To derive the mathematical formulas for this
complex EM scattering model, we first return back to the simple
model when those inhomogeneous scatterers are absent and rewrite

the system matrix equation according to [21, eq. (23)] as

ZI = V (1)

where Z is a block-by-block tridiagonal matrix and has the dimen-
sions of 26M

k=1 Nk × 26M
k=1 Nk in which Nk is the number of

the discrete points of SIM on the kth smooth elliptical boundary
lk . In addition, one should note that the system matrix Z is actu-
ally cascaded by a series of submatrices that represent either the
self-coupling or the mutual coupling of EM fields and equivalent
current on elliptical boundaries, according to the surface equivalence
theorem. The self-coupling refers to the situation that the equivalent
current and the EM field observation points are located on the same
boundary. In contrast, the mutual coupling refers to the situation
that the EM field observation points are located on two adjacent
boundaries to that on which the equivalent current is located. See
[21, eqs. (2) and (3)]. Let us take the region �m+1 as an example
and pick the submatrix between the rows of 26m−1

k=1 Nk + Nm +1 and
26m

k=1 Nk + Nm+1 and between the columns of 26m−1
k=1 Nk + 1 and

26m+1
k=1 Nk of Z. It is written as

Z�m+1

=

[
Zin

J,m,m Zin
M,m,m ZJ,m,m+1 ZM,m,m+1

ZJ,m+1,m ZM,m+1,m Zout
J,m+1,m+1 Zout

M,m+1,m+1

]
(2)

which has the dimensions of 6m+1
k=m Nk × 26m+1

k=m Nk . The superscript
“out” means both the equivalent source point and the field point
are located on the outer side of a certain elliptical boundary while
“in” means they are located on the inner side. The three characters
of the subscript denote the source type, field-point boundary, and
source-point boundary, respectively. For example, the subscript of
ZM,m,m+1 means the field point is located on the lm th boundary and
the equivalent magnetic source is located on the lm+1th boundary.
The unknown vector I is composed of the Fourier spectral coefficients
of the magnetic fields and tangential electric fields in all M elliptical
boundaries and is constructed as

I =

[
H̃T

z,1 Ẽ
T
t,1 · · · H̃T

z,m Ẽ
T
t,m · · · H̃T

z,M Ẽ
T
t,M

]T
(3)

which has the dimensions of 26M
k=1 Nk × 1. The vector V in (1) is

composed of the incident magnetic fields in the outermost elliptical
boundary and written as

V =

[(
Hinc

z,1

)T
0 · · · 0

]T
(4)

which also has the dimensions of 26M
k=1 Nk × 1. We now place

multiple inhomogeneous scatterers in the region �m+1, discretize the
whole ring between the lm th and lm+1th boundaries, and formulate it
using the SESI method given [17]. In this situation, the self-coupling
and mutual EM coupling on or between the lm th and lm+1th
boundaries cannot be formulated by the SIM submatrices given in (2).
Instead, they are formulated by the SEM submatrices. Therefore,
we replace Z�m+1 in (2) with a new SEM submatrix

Z1
�m+1

=

 Zb1,b1 T1 ZS1 T1 Zb1,i1

Zi1,b1 T1 Zi1,i2 Zi2,b2 T2
Zb2,i2 Zb2,b2 T2 ZS2 T2

 (5)

which is assembled similar to [17, eq. (13a)] but with the SEM region
�m+1 enclosed by both the lm th (denoted by b1) and lm+1th (denoted
by b2) elliptical boundaries. In addition, both the superscripts i1 and
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i2 denote the region �m+1. T1 and T2 are the inverse Fourier
transform matrices for the boundaries lm and lm+1, respectively.
The definitions of T and the submatrix Z in (5) have been given
in [17] and will not be repeated here. Note Z1

�m+1
in (5) has the

dimensions of (Nb1 + Ni1 + Nb2) × (26m+1
k=m Nk + Ni1) where Nb1 ,

Nb2 , and Ni1 denote the numbers of discrete points of SEM on
the lm th boundary, on the lm+1th boundary, and inside the region
�m+1, respectively. Obviously, replacing Z�m+1 in (2) with Z1

�m+1
in (5) naturally increases the dimensions of the original system matrix
Z in (1) to (26M

k=1 Nk + Nb1 + Ni1 + Nb2 − Nm − Nm+1) ×

(26M
k=1 Nk + Ni1) to form the new system matrix Z1. Therefore,

we also increase the row number of the vector I in (3) from 26M
k=1 Nk

to 26M
k=1 Nk + Ni1 , insert the coefficient vector Hi1 of the SEM

nodes inside the region �m+1 into I, and form the new coefficient
vector

I1
=

[
· · · H̃T

z,m Ẽ
T
t,m

(
Hi1

)T
H̃T

z,m+1 Ẽ
T
t,m+1 · · ·

]T
. (6)

We now further increase the complexity of the scattering model
and add a series of isolated inhomogeneous scatterers in the region
�n+1, as shown in Fig. 1. These scatterers are wrapped by the
elliptical smooth boundaries S3, S4, . . . , SN , respectively. Note the
submatrix Z�n+1 for the region �n+1 is similar to �m+1 in (2) but
with m replaced with n when the isolated inhomogeneous scatterers
are absent. However, when they are present, additional submatrices
must be added to Z�n+1 to account for the mutual EM coupling
between the ln th and ln+1th boundaries and S3, . . . , SN and the
mutual EM coupling among S3, . . . , SN themselves. In the following,
we just take the scatterer wrapped by S3 as an example and discuss
how it will enlarge the submatrix Z�n+1 . We first construct the SESI
submatrix for the inhomogeneous scatterer wrapped by S3 which is
similar to [17, eq. (13a)] and it is written as

Z�S3 =

 Zout
J,b3,b3

Zout
M,b3,b3

0

Zb3,b3 T3 ZS3 T3 Zb3,i3

Zi3,b3 T3 0 Zi3,i3

 (7)

where b3 refers to the boundary S3 while i3 refers to the inner region
of S3. T3 is the inverse Fourier transform matrix for the boundary
S3. The definitions of the submatrices of (7) can be referred to
[17, eq. (13a)]. Note that the dimensions of Z�S3 are (Ns3 + Nb3 +

Ni3)×(2Ns3+Ni3) where Ni3 and Nb3 denote the numbers of discrete
points of SEM inside S3 and on S3, respectively, while Ns3 denotes
the number of discrete points of SIM on S3. Then, we enlarge the
dimensions of the matrix Z�n+1 from (6n+1

k=n Nk) × (26n+1
k=n Nk) to

(6n+1
k=n Nk + Ns3 + Nb3 + Ni3)× (26n+1

k=n Nk +2Ns3 + Ni3) and insert
the Z�S3 into the center of the original matrix Z�n+1 , that is, between
the first Nn rows and the last Nn+1 rows and between the first 2Nn
columns and the last 2Nn+1 columns. Now, let us consider the mutual
EM coupling between S3 and the ln th and ln+1th boundaries. The cor-
responding matrices are constructed as Zb3,n = [ZJ,b3,n ZM,b3,n] ∈

CNs3×2Nn , Zb3,n+1 = [ZJ,b3,n+1 ZM,b3,n+1] ∈ CNs3×2Nn+1 ,
Zn,b3 = [ZJ,n,b3 ZM,n,b3 ] ∈ CNn×2Ns3 , and Zn+1,b3 =

[ZJ,n+1,b3 ZM,n+1,b3 ] ∈ CNn+1×2Ns3 . In the same representation
way, the four blocks in the top left corner, in the top right corner,
in the bottom left corner, and in the bottom right corner of the original
Z�n+1 defined by (2) can be denoted as Zin

n,n , Zn,n+1, Zn+1,n , and
Zout

n+1,n+1, respectively. Finally, after the insertion of Z�S3 into the
original Z�n+1 , we continue to insert Zb3,n , Zb3,n+1, Zn,b3 , and

Zn+1,b3 and come to the new submatrix

Z2
�n+1

=

 Zin
n,n Zn,b3 Zn,n+1

Zb3,n Z�S3 Zb3,n+1
Zn+1,n Zn+1,b3 Zout

n+1,n+1

 (8)

which has the dimensions of (6n+1
k=n Nk + Ns3 + Nb3 + Ni3) ×

(26n+1
k=n Nk + 2Ns3 + Ni3). Because the mutual coupling is realized

only by the SIM and has no relationship with the SEM, the column
numbers of Zn,b3 and Zn+1,b3 are different from that of Z�S3 .
Therefore, they are aligned with Z�S3 to the left with padded zeros.
Similarly, Zb3,n and Zb3,n+1 are aligned with Z�S3 to the top with
padded zeros. The aforementioned operations further increase the
dimensions of Z1 to (26M

k=1 Nk + Nb1 + Ni1 + Nb2 − Nm − Nm+1 +

Ns3 + Nb3 + Ni3)× (26M
k=1 Nk + Ni1 + 2Ns3 + Ni3) to form the new

system matrix Z2. So, we synchronously increase the row number
of the vector I1 to 26M

k=1 Nk + Ni1 + 2Ns3 + Ni3 , insert the Fourier

spectral coefficient vectors H̃z,b3 and Ẽt,b3 of SIM on S3 and the
coefficient vector Hi3 of the SEM nodes inside S3 into I1, and form
the new coefficient vector

I2
=

[
· · · H̃T

z,m Ẽ
T
t,m

(
Hi1

)T
H̃T

z,m+1 Ẽ
T
t,m+1

· · · H̃T
z,n Ẽ

T
t,n H̃T

z,b3
Ẽ

T
t,b3

(
Hi3

)T
H̃T

z,n+1 Ẽ
T
t,n+1 · · ·

]T
.

(9)

The aforementioned process can be repeated until all the SESI
matrices like (7) for all the isolated scatterers wrapped by S3, . . . , SN
are inserted into the system matrix Z. Finally, let us discuss the
mutual EM coupling among the smooth surfaces S3, . . . , SN . Here,
we just take the EM coupling between S3 and S4 as an example
and assume these two scatterers are both placed in the region �n+1.
By simultaneously taking the mutual EM coupling between S3 and
the ln th and ln+1th boundaries, between S4 and the ln th and ln+1th
boundaries, and between S3 and S4 into account, we reconstruct the
new submatrix for the region �n+1 as

Z3
�n+1

=


Zin

n,n Zn,b3 Zn,b4 Zn,n+1
Zb3,n Z�S3 Zb3,b4 Zb3,n+1
Zb4,n Zb4,b3 Z�S4 Zb4,n+1

Zn+1,n Zn+1,b3 Zn+1,b4 Zout
n+1,n+1

 (10)

which has the dimensions of (6n+1
k=n Nk +64

k=3(Nsk + Nbk + Nik ))×

(26n+1
k=n Nk + 64

k=3(2Nsk + Nik )). We repeat the aforementioned
process to assemble the final system matrix Z3 which has the
dimensions of (6M

k=1 Nk + 6N
k=3(Nsk + Nbk + Nik ) + Nb1 + Ni1 +

Nb2 −Nm −Nm+1)×(26M
k=1 Nk +6N

k=3(2Nsk +Nik )+Ni1). We also

repeatedly insert [H̃T
z,bk

Ẽ
T
t,bk

(Hik )T
] with k = 4, . . . , N to the right

of [H̃T
z,b3

Ẽ
T
t,b3

(Hi3)T
] in (9) to assemble the final vector I3 whose

length is (26M
k=1 Nk +6N

k=3(2Nsk +Nik )+Ni1). Meanwhile, we must
increase the length of V in (4) to that of I3 and directly fill zero in
the additional elements since the incident waves only impinge on
the boundary l1. Finally, we use the conjugate transpose of Z3 to
multiply two sides of the system equation like (1) and solve for the
final vector I3 which contains both the magnetic field coefficients
inside the SEM region, e.g., Hi1 , and the Fourier-spectral coefficients
of the tangential EM fields on the boundaries of the smooth ellipses,

e.g., H̃T
z,b3

and Ẽ
T
t,b3

, used to enclose the isolated inhomogeneous
scatterers. The correctness of these coefficients will be validated in
Section III. Furthermore, we multiply the spectral-domain radiation
matrix by the vector I3 to compute the scattered fields at the receiver
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Fig. 2. Two-dimensional EM scattering models for multiple inhomoge-
neous objects embedded in a multilayered ellipse. (a) Forty inhomogeneous
cross-shapes are embedded in the fourth layer. (b) Besides the cross-shapes,
an inhomogeneous rectangle and an inhomogeneous square are also placed
in the seventh layer. Geometry parameters of the embedded scatterers are
annotated in the figure.

TABLE I
MODEL PARAMETERS OF THE EMBEDDED ANISOTROPIC SCATTERERS

array which also will be validated in Section III. Note the assembly
of the spectral-domain radiation matrix has been discussed in [21]
and will not be repeated here.

III. NUMERICAL RESULTS

In this section, we present two numerical cases to verify the
correctness and efficiency of the proposed SESI method. As shown in
Fig. 2, the 2-D elliptical cylinders adopted in our models are the same
as those in [21, Fig. 6]. Both their geometry and dielectric parameters
are listed in [21, Table II]. In the first case as shown in Fig. 2(a),
we only retain the five outermost ellipses but place 40 inhomogeneous
cross-shapes between the third and fourth ellipses. The centers of
these cross-shapes are located with an equal central-angle step in the
circumference of a fictitious ellipse which has the center coordinate
(−1.1, −0.75) m, the horizontal half-axis length 10.5 m, and the
vertical half-axis length 11.0 m. In this case, we will compare the
total EM fields at the centers of the 40 cross-shapes computed by our
SESI method and by FEM implemented by COMSOL. We will also
compare the total EM fields sampled at some representative points
inside the whole computational domain by our SESI method and by
FEM. For the sampling points located inside the SEM region between
the third and fourth elliptical boundaries, the magnetic field values at
them are evaluated by first mapping the coordinates of the sampling
points in the physical domain to the coordinates in the reference
domain and then substituting them into the obtained magnetic field
function expanded by the second-order Gauss–Lobatto–Legendre
(GLL) basis functions of SEM [26]. The electric field values at
the sampling points are evaluated by performing 2-D curls to the
magnetic fields which actually act on the GLL basis functions in the
reference domain. Because this process is rather trivial, it will not be
discussed here in detail.

In the second case as shown in Fig. 2(b), we retain all the ten
ellipses. Besides the cross-shapes, in the region between the sixth and
seventh ellipses, we also place an inhomogeneous rectangle and an
inhomogeneous square whose centers are located at (−3.2, 4.5) and
(1.0, 4.7) m, respectively. In this case, we will compare the tangential
EM field values sampled on the fictitious ellipse S3 enclosing the
rectangle and on the fictitious circle S4 enclosing the square and
the scattered EM fields at the receiver array computed by our SESI
method and by FEM. Note the geometry parameters of the embedded
inhomogeneous scatterers and the fictitious boundaries are annotated

Fig. 3. Comparisons of the total EM fields at the centers of the
40 cross-shapes computed by the SESI method and FEM. (a) Real part of
E tot

x . (b) Imaginary part of E tot
x . (c) The real part of E tot

y . (d) Imaginary
part of E tot

y . (e) Real part of H tot
z . (f) Imaginary part of H tot

z .

TABLE II
MESH INFORMATION AND COMPUTATIONAL COST OF THE FIRST CASE

in Fig. 2. The scatterer anisotropic parameters are listed in Table I
in which the permittivity and permeability are relative values. The
optical-axis rotation angle θ of the arbitrarily anisotropic scatterer
is defined in [17, eq. (2)]. The configurations of magnetic dipole
transmitters and the receiver array in two cases are the same as those
used in [21, Sec. III]. The operation frequency is still 300 MHz.
All the simulations and numerical computations are performed on a
workstation with a 48-core Intel Xeon 6248R 3.0 G CPU and 1024-
GB RAM. To quantify the computational error of the proposed SESI
method with respect to the FEM benchmark, we define the relative
error as

Err =

∣∣∣∣∣∣fSESI
− fFEM

∣∣∣∣∣∣∣∣∣∣fFEM
∣∣∣∣ (11)

where ∥·∥ denotes the L2-norm and f represents the electric field
vector or the magnetic field vector in all the sampling points.

We first verify the computation accuracy and efficiency of our
SESI method for evaluation of the total EM fields at the centers
of the 40 arbitrarily anisotropic inhomogeneous cross-shapes and at
7 × 9 sampling points inside the computational domain using the
scattering model of the first case shown in Fig. 2(a). The sampling
point located at the bottom left corner of the uniform 7 × 9 array has
the coordinate (−21.2, −16.0) m. The intervals between two adjacent
sampling points in both the x̂-direction and the ŷ-direction are 5.0 m.
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Fig. 4. Comparisons of the total EM fields at 63 typical sampling points
computed by the SESI method and FEM. (a) Real part of E tot

x . (b) Imaginary
part of E tot

x . (c) Real part of E tot
y . (d) Imaginary part of E tot

y . (e) Real part
of H tot

z . (f) Imaginary part of H tot
z .

Fig. 5. Comparisons of the tangential EM fields sampled on the fictitious
smooth boundaries enclosing the inhomogeneous scatterers placed between
the sixth and seventh boundaries of the background elliptical cylinders
computed by the SESI method and FEM. (a) Real part of Hz. (b) Imaginary
part of Hz. (c) Real part of Et . (d) Imaginary part of Et .

The discretization mesh information for FEM and the SESI method
is given in Table II.

Fig. 3 shows comparisons of the total EM fields at the 40 cross-
shape centers computed by our SESI method and FEM. The relative
errors of E tot

x , E tot
y , and H tot

z from SESI method with respect to
those from FEM are 0.26%, 0.21%, and 0.03%, respectively. Fig. 4
shows comparisons of the total EM fields at the 63 sampling points
computed by our SESI method and FEM. The relative errors of
E tot

x , E tot
y , and H tot

z from SESI method with respect to those from

Fig. 6. Comparisons of the scattered EM fields at the receiver array computed
by the SESI method and FEM. (a) Real part of E tot

x . (b) Imaginary part of
E tot

x . (c) Real part of E tot
y . (d) Imaginary part of E tot

y . (e) Real part of H tot
z .

(f) Imaginary part of H tot
z .

TABLE III
MESH INFORMATION AND COMPUTATIONAL COST OF THE SECOND CASE

FEM are 0.09%, 0.07%, and 0.1%, respectively. For this case with
five elliptical cylinders and 40 anisotropic embedded scatterers, the
comparisons of the computational cost of FEM and the SESI method
are listed in Table II. The memory refers to the peak memory in the
whole computation process. Obviously, compared with the traditional
FEM, the proposed SESI method can reliably compute the total EM
field values no matter when the sampling points are located inside
the arbitrarily anisotropic scatterers or inside the background biaxially
elliptical cylinders with a much lower cost. The root reason for this
big discrepancy is that FEM is implemented in the whole region
enclosing the five elliptical layers while SEM is only implemented
in the fourth layer in which the 40 cross-shapes are embedded.

Now let us check the computation accuracy of the tangential EM
fields on the fictitious ellipse and circle enclosing inhomogeneous
scatterers which are placed in the region between the sixth and
seventh boundaries of the background ellipses and the scattered EM
fields at the receiver array using the scattering model of the second
case shown in Fig. 2(b). We pick 30 representative sampling points
in the circumference of the fictitious ellipse and 20 points in the
circumference of the fictitious circle for validation. These sampling
points are distributed in the circumferences with equal central-angle
steps. The discretization mesh information for FEM and the SESI
method is given in Table III.

Fig. 5 shows comparisons of the tangential magnetic and electric
fields at the 50 sampling points in the circumferences computed
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by our SESI method and FEM. The relative errors of Hz and
Et from the SESI method with respect to those from FEM are
0.40% and 0.26%, respectively. Fig. 6 shows comparisons of the
scattered EM fields at the receiver array computed by our SESI
method and FEM. The relative errors of Esct

x , Esct
y , and H sct

z from
SESI method with respect to those from FEM are 0.08%, 0.08%,
and 0.11%, respectively. For this case with ten elliptical cylinders
and multiple embedded inhomogeneous regions, the comparisons of
the computational cost of FEM and the SESI method are listed in
Table III. Obviously, for the evaluation of EM fields on the fictitious
smooth boundaries enclosing the inhomogeneous scatterers and the
scattered fields at the receiver array, the proposed SESI method also
can achieve the same computation accuracy as that of FEM but with
a much lower cost.

IV. CONCLUSION AND DISCUSSION

In this work, we extend our previous work and propose a novel
hybrid SESI method to fast compute the 2-D EM scattering from
multiple arbitrarily anisotropic inhomogeneous scatterers embedded
in multilayered biaxially anisotropic elliptical cylinders. The new
system matrix is assembled by inserting multiple SESI system
submatrices into the original SIM system matrix. Meanwhile, several
other submatrices are also inserted into the SIM matrix to account
for the mutual EM coupling between the isolated inhomogeneous
scatterers and the background elliptical boundaries as well as the
mutual EM coupling among the isolated scatterers themselves.
The solved vector simultaneously contains the tangential EM fields
on the smooth elliptical boundaries and the magnetic field values
inside the inhomogeneous regions. Several numerical experiments
are implemented not only to validate the EM fields inside the
inhomogeneous regions or on the fictitious boundaries enclosing the
inhomogeneous regions but also to validate the scattered EM fields at
the receiver array. It is found that our SESI method can achieve the
same computation accuracy as the traditional FEM for EM scattering
from multiple inhomogeneous scatterers embedded in multilayered
elliptical cylinders but with a much lower cost. This method can
be straightforwardly extended to the EM scattering scenarios with
more scatterers simultaneously placed in more cylindrical regions by
inserting more SESI submatrices and auxiliary matrix blocks into the
original SIM system matrix.
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